SENTIMENT TAHLIL DOIRASIDA OLIB BORILGAN ILMIY QARASHLAR TADQIQI
Keywords:
sentiment analysis, NLP, Deep learning, social networks, research methods, research topicks.Abstract
Sentiment analysis, one of the research points in the field of natural language processing, has attracted the attention of researchers, and more and more research papers in the field are published. Many literature reviews on sentiment anlaysis, including methods, techniques, and software, have been produced using a variety of research methodologies and tools, but no jurvey has been conducted on the evolution of research methods and topics in sentiment analysis.
References
Abbasi A, France S, Zhang Z, Chen H. Selecting attributes for sentiment classification using feature relation networks. IEEE Trans Knowl Data Eng. 2011;23(3):447–462. http://doi.org/10.1109/TKDE.2010.110. [CrossRef] [Google Scholar]
Abdullah NSD, Zolkepli IA (2017) Sentiment analysis of online crowd input towards Brand Provocation in Facebook, Twitter, and Instagram. In: Proceedings of the international conference on big data and internet of thing, association for computing machinery, pp 67–74. http://doi.org/10.1145/3175684.3175689
Abo MEM, Idris N, Mahmud R, Qazi A, Hashem IAT, Maitama JZ, et al. A multi-criteria approach for Arabic dialect sentiment analysis for online reviews: exploiting optimal machine learning algorithm selection. Sustainability. 2021;13(18):10018. http://doi.org/10.3390/su131810018. [CrossRef] [Google Scholar]
Abrahams AS, Jiao J, Wang GA, Fan W. Vehicle defect discovery from social media. Decis Support Syst. 2012;54(1):87–97. http://doi.org/10.1016/j.dss.2012.04.005. [CrossRef] [Google Scholar]
Acheampong FA, Nunoo-Mensah H, Chen W. Transformer models for text-based emotion detection: a review of BERT-based approaches. Artif Intell Rev. 2021;54(8):5789–5829. http://doi.org/10.1007/s10462-021-09958-2 [CrossRef] [Google Scholar]
Adak A, Pradhan B, Shukla N. Sentiment analysis of customer reviews of food delivery services using deep learning and explainable artificial intelligence: systematic review. Foods. 2022;11(10):1500. http://doi.org/10.3390/foods11101500 . [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Agüero-Torales MM, Salas JIA, López-Herrera AG. Deep learning and multilingual sentiment analysis on social media data: an overview. Appl Soft Comput. 2021; 107:107373. http://doi.org/10.1016/j.asoc.2021.107373. [CrossRef] [Google Scholar]
Ahuja R, Rastogi H, Choudhuri A, Garg B (2015) Stock market forecast using sentiment analysis. In: 2015 2nd International conference on computing for sustainable global development, INDIACom 2015, Bharati Vidyapeeth, New Delhi, pp 1008–1010. http://doi.org/10.48550/arXiv.2204.05783
Ain QT, Ali M, Riaz A, Noureen A, Kamranz M, Hayat B, et al. Sentiment analysis using deep learning techniques: a review. Int J Adv Comput Sci Appl. 2017;8(6):424–433. http://doi.org/10.14569/ijacsa.2017.080657 . [CrossRef] [Google Scholar]
Al-Ayyoub M, Nuseir A, Alsmearat K, Jararweh Y, Gupta B. Deep learning for Arabic NLP: a survey. J Comput Sci. 2018; 26:522–531.
http://doi.org/10.1016/j.jocs.2017.11.011 . [CrossRef] [Google Scholar]
Al-Ayyoub M, Khamaiseh AA, Jararweh Y, Al-Kabi MN. A comprehensive survey of Arabic sentiment analysis. Inf Process Manag. 2019;56(2):320–342. http://doi.org/10.1016/j.ipm.2018.07.006. [CrossRef] [Google Scholar]
Al-Dabet S, Tedmori S, AL-Smadi M. Enhancing Arabic aspect-based sentiment analysis using deep learning models. Comput Speech Lang. 2021; 69:1224. http://doi.org/10.1016/j.csl.2021.101224. [CrossRef] [Google Scholar]